Copied to
clipboard

G = S3×C24⋊C5order 480 = 25·3·5

Direct product of S3 and C24⋊C5

direct product, metabelian, soluble, monomial, A-group

Aliases: S3×C24⋊C5, (S3×C24)⋊C5, (C23×C6)⋊C10, C244(C5×S3), C3⋊(C2×C24⋊C5), (C3×C24⋊C5)⋊3C2, SmallGroup(480,1196)

Series: Derived Chief Lower central Upper central

C1C23×C6 — S3×C24⋊C5
C1C3C23×C6C3×C24⋊C5 — S3×C24⋊C5
C23×C6 — S3×C24⋊C5
C1

Generators and relations for S3×C24⋊C5
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f2=g5=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg-1=cde, de=ed, df=fd, gdg-1=def, geg-1=ef=fe, gfg-1=c >

Subgroups: 1464 in 164 conjugacy classes, 9 normal (all characteristic)
C1, C2, C3, C22, C5, S3, S3, C6, C23, C10, D6, C2×C6, C15, C24, C24, C22×S3, C22×C6, C5×S3, C25, S3×C23, C23×C6, C24⋊C5, S3×C24, C2×C24⋊C5, C3×C24⋊C5, S3×C24⋊C5
Quotients: C1, C2, C5, S3, C10, C5×S3, C24⋊C5, C2×C24⋊C5, S3×C24⋊C5

Character table of S3×C24⋊C5

 class 12A2B2C2D2E2F2G35A5B5C5D6A6B6C10A10B10C10D15A15B15C15D
 size 135551515152161616161010104848484832323232
ρ1111111111111111111111111    trivial
ρ21-1111-1-1-111111111-1-1-1-11111    linear of order 2
ρ3111111111ζ52ζ54ζ5ζ53111ζ5ζ54ζ53ζ52ζ53ζ52ζ54ζ5    linear of order 5
ρ41-1111-1-1-11ζ5ζ52ζ53ζ541115352545ζ54ζ5ζ52ζ53    linear of order 10
ρ51-1111-1-1-11ζ52ζ54ζ5ζ531115545352ζ53ζ52ζ54ζ5    linear of order 10
ρ6111111111ζ53ζ5ζ54ζ52111ζ54ζ5ζ52ζ53ζ52ζ53ζ5ζ54    linear of order 5
ρ7111111111ζ5ζ52ζ53ζ54111ζ53ζ52ζ54ζ5ζ54ζ5ζ52ζ53    linear of order 5
ρ8111111111ζ54ζ53ζ52ζ5111ζ52ζ53ζ5ζ54ζ5ζ54ζ53ζ52    linear of order 5
ρ91-1111-1-1-11ζ54ζ53ζ52ζ51115253554ζ5ζ54ζ53ζ52    linear of order 10
ρ101-1111-1-1-11ζ53ζ5ζ54ζ521115455253ζ52ζ53ζ5ζ54    linear of order 10
ρ1120222000-12222-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ1220222000-15525354-1-1-100005455253    complex lifted from C5×S3
ρ1320222000-15254553-1-1-100005352545    complex lifted from C5×S3
ρ1420222000-15355452-1-1-100005253554    complex lifted from C5×S3
ρ1520222000-15453525-1-1-100005545352    complex lifted from C5×S3
ρ165-511-3-13-15000011-300000000    orthogonal lifted from C2×C24⋊C5
ρ175-51-313-1-150000-31100000000    orthogonal lifted from C2×C24⋊C5
ρ185-5-311-1-13500001-3100000000    orthogonal lifted from C2×C24⋊C5
ρ1955-31111-3500001-3100000000    orthogonal lifted from C24⋊C5
ρ20551-31-31150000-31100000000    orthogonal lifted from C24⋊C5
ρ215511-31-315000011-300000000    orthogonal lifted from C24⋊C5
ρ22100-622000-50000-13-100000000    orthogonal faithful
ρ231002-62000-500003-1-100000000    orthogonal faithful
ρ2410022-6000-50000-1-1300000000    orthogonal faithful

Permutation representations of S3×C24⋊C5
On 30 points - transitive group 30T111
Generators in S30
(1 17 15)(2 18 11)(3 19 12)(4 20 13)(5 16 14)(6 24 26)(7 25 27)(8 21 28)(9 22 29)(10 23 30)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 15)(7 11)(8 12)(9 13)(10 14)(16 23)(17 24)(18 25)(19 21)(20 22)
(3 28)(5 30)(8 19)(10 16)(12 21)(14 23)
(1 26)(2 27)(3 28)(4 29)(6 17)(7 18)(8 19)(9 20)(11 25)(12 21)(13 22)(15 24)
(1 26)(5 30)(6 17)(10 16)(14 23)(15 24)
(1 26)(4 29)(6 17)(9 20)(13 22)(15 24)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)

G:=sub<Sym(30)| (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (1,26)(2,27)(3,28)(4,29)(5,30)(6,15)(7,11)(8,12)(9,13)(10,14)(16,23)(17,24)(18,25)(19,21)(20,22), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;

G:=Group( (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (1,26)(2,27)(3,28)(4,29)(5,30)(6,15)(7,11)(8,12)(9,13)(10,14)(16,23)(17,24)(18,25)(19,21)(20,22), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );

G=PermutationGroup([[(1,17,15),(2,18,11),(3,19,12),(4,20,13),(5,16,14),(6,24,26),(7,25,27),(8,21,28),(9,22,29),(10,23,30)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,15),(7,11),(8,12),(9,13),(10,14),(16,23),(17,24),(18,25),(19,21),(20,22)], [(3,28),(5,30),(8,19),(10,16),(12,21),(14,23)], [(1,26),(2,27),(3,28),(4,29),(6,17),(7,18),(8,19),(9,20),(11,25),(12,21),(13,22),(15,24)], [(1,26),(5,30),(6,17),(10,16),(14,23),(15,24)], [(1,26),(4,29),(6,17),(9,20),(13,22),(15,24)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)]])

G:=TransitiveGroup(30,111);

On 30 points - transitive group 30T120
Generators in S30
(1 17 15)(2 18 11)(3 19 12)(4 20 13)(5 16 14)(6 24 26)(7 25 27)(8 21 28)(9 22 29)(10 23 30)
(6 24)(7 25)(8 21)(9 22)(10 23)(11 18)(12 19)(13 20)(14 16)(15 17)
(3 28)(5 30)(8 19)(10 16)(12 21)(14 23)
(1 26)(2 27)(3 28)(4 29)(6 17)(7 18)(8 19)(9 20)(11 25)(12 21)(13 22)(15 24)
(1 26)(5 30)(6 17)(10 16)(14 23)(15 24)
(1 26)(4 29)(6 17)(9 20)(13 22)(15 24)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)

G:=sub<Sym(30)| (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (6,24)(7,25)(8,21)(9,22)(10,23)(11,18)(12,19)(13,20)(14,16)(15,17), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;

G:=Group( (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (6,24)(7,25)(8,21)(9,22)(10,23)(11,18)(12,19)(13,20)(14,16)(15,17), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );

G=PermutationGroup([[(1,17,15),(2,18,11),(3,19,12),(4,20,13),(5,16,14),(6,24,26),(7,25,27),(8,21,28),(9,22,29),(10,23,30)], [(6,24),(7,25),(8,21),(9,22),(10,23),(11,18),(12,19),(13,20),(14,16),(15,17)], [(3,28),(5,30),(8,19),(10,16),(12,21),(14,23)], [(1,26),(2,27),(3,28),(4,29),(6,17),(7,18),(8,19),(9,20),(11,25),(12,21),(13,22),(15,24)], [(1,26),(5,30),(6,17),(10,16),(14,23),(15,24)], [(1,26),(4,29),(6,17),(9,20),(13,22),(15,24)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)]])

G:=TransitiveGroup(30,120);

Matrix representation of S3×C24⋊C5 in GL7(𝔽31)

303000000
1000000
0010000
0001000
0000100
0000010
0000001
,
1000000
303000000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
00030000
00019100
001900300
0001001
,
1000000
0100000
00300000
0001000
000123000
000190300
000300030
,
1000000
0100000
00300000
00030000
00119100
001212010
00191001
,
1000000
0100000
00300000
0001000
000123000
00120010
00190001
,
1000000
0100000
0001000
0030122900
00001910
00001201
0000100

G:=sub<GL(7,GF(31))| [30,1,0,0,0,0,0,30,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,19,0,0,0,0,30,19,0,1,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,12,19,30,0,0,0,0,30,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,30],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,1,12,19,0,0,0,30,19,12,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,12,19,0,0,0,1,12,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,30,0,0,0,0,0,1,12,0,0,0,0,0,0,29,19,12,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;

S3×C24⋊C5 in GAP, Magma, Sage, TeX

S_3\times C_2^4\rtimes C_5
% in TeX

G:=Group("S3xC2^4:C5");
// GroupNames label

G:=SmallGroup(480,1196);
// by ID

G=gap.SmallGroup(480,1196);
# by ID

G:=PCGroup([7,-2,-5,-2,2,2,2,-3,324,850,2111,222,15686]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^2=g^5=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g^-1=c*d*e,d*e=e*d,d*f=f*d,g*d*g^-1=d*e*f,g*e*g^-1=e*f=f*e,g*f*g^-1=c>;
// generators/relations

Export

Character table of S3×C24⋊C5 in TeX

׿
×
𝔽