direct product, metabelian, soluble, monomial, A-group
Aliases: S3×C24⋊C5, (S3×C24)⋊C5, (C23×C6)⋊C10, C24⋊4(C5×S3), C3⋊(C2×C24⋊C5), (C3×C24⋊C5)⋊3C2, SmallGroup(480,1196)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C23×C6 — C3×C24⋊C5 — S3×C24⋊C5 |
C23×C6 — S3×C24⋊C5 |
Generators and relations for S3×C24⋊C5
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f2=g5=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg-1=cde, de=ed, df=fd, gdg-1=def, geg-1=ef=fe, gfg-1=c >
Subgroups: 1464 in 164 conjugacy classes, 9 normal (all characteristic)
C1, C2, C3, C22, C5, S3, S3, C6, C23, C10, D6, C2×C6, C15, C24, C24, C22×S3, C22×C6, C5×S3, C25, S3×C23, C23×C6, C24⋊C5, S3×C24, C2×C24⋊C5, C3×C24⋊C5, S3×C24⋊C5
Quotients: C1, C2, C5, S3, C10, C5×S3, C24⋊C5, C2×C24⋊C5, S3×C24⋊C5
Character table of S3×C24⋊C5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | |
size | 1 | 3 | 5 | 5 | 5 | 15 | 15 | 15 | 2 | 16 | 16 | 16 | 16 | 10 | 10 | 10 | 48 | 48 | 48 | 48 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ53 | ζ52 | ζ54 | ζ5 | linear of order 5 |
ρ4 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ54 | ζ5 | ζ52 | ζ53 | linear of order 10 |
ρ5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ53 | ζ52 | ζ54 | ζ5 | linear of order 10 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ52 | ζ53 | ζ5 | ζ54 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ54 | ζ5 | ζ52 | ζ53 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ5 | ζ54 | ζ53 | ζ52 | linear of order 5 |
ρ9 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ5 | ζ54 | ζ53 | ζ52 | linear of order 10 |
ρ10 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ52 | ζ53 | ζ5 | ζ54 | linear of order 10 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | complex lifted from C5×S3 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | complex lifted from C5×S3 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | complex lifted from C5×S3 |
ρ15 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | complex lifted from C5×S3 |
ρ16 | 5 | -5 | 1 | 1 | -3 | -1 | 3 | -1 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ17 | 5 | -5 | 1 | -3 | 1 | 3 | -1 | -1 | 5 | 0 | 0 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ18 | 5 | -5 | -3 | 1 | 1 | -1 | -1 | 3 | 5 | 0 | 0 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ19 | 5 | 5 | -3 | 1 | 1 | 1 | 1 | -3 | 5 | 0 | 0 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ20 | 5 | 5 | 1 | -3 | 1 | -3 | 1 | 1 | 5 | 0 | 0 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ21 | 5 | 5 | 1 | 1 | -3 | 1 | -3 | 1 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ22 | 10 | 0 | -6 | 2 | 2 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 10 | 0 | 2 | -6 | 2 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 10 | 0 | 2 | 2 | -6 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 17 15)(2 18 11)(3 19 12)(4 20 13)(5 16 14)(6 24 26)(7 25 27)(8 21 28)(9 22 29)(10 23 30)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 15)(7 11)(8 12)(9 13)(10 14)(16 23)(17 24)(18 25)(19 21)(20 22)
(3 28)(5 30)(8 19)(10 16)(12 21)(14 23)
(1 26)(2 27)(3 28)(4 29)(6 17)(7 18)(8 19)(9 20)(11 25)(12 21)(13 22)(15 24)
(1 26)(5 30)(6 17)(10 16)(14 23)(15 24)
(1 26)(4 29)(6 17)(9 20)(13 22)(15 24)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
G:=sub<Sym(30)| (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (1,26)(2,27)(3,28)(4,29)(5,30)(6,15)(7,11)(8,12)(9,13)(10,14)(16,23)(17,24)(18,25)(19,21)(20,22), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;
G:=Group( (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (1,26)(2,27)(3,28)(4,29)(5,30)(6,15)(7,11)(8,12)(9,13)(10,14)(16,23)(17,24)(18,25)(19,21)(20,22), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );
G=PermutationGroup([[(1,17,15),(2,18,11),(3,19,12),(4,20,13),(5,16,14),(6,24,26),(7,25,27),(8,21,28),(9,22,29),(10,23,30)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,15),(7,11),(8,12),(9,13),(10,14),(16,23),(17,24),(18,25),(19,21),(20,22)], [(3,28),(5,30),(8,19),(10,16),(12,21),(14,23)], [(1,26),(2,27),(3,28),(4,29),(6,17),(7,18),(8,19),(9,20),(11,25),(12,21),(13,22),(15,24)], [(1,26),(5,30),(6,17),(10,16),(14,23),(15,24)], [(1,26),(4,29),(6,17),(9,20),(13,22),(15,24)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)]])
G:=TransitiveGroup(30,111);
(1 17 15)(2 18 11)(3 19 12)(4 20 13)(5 16 14)(6 24 26)(7 25 27)(8 21 28)(9 22 29)(10 23 30)
(6 24)(7 25)(8 21)(9 22)(10 23)(11 18)(12 19)(13 20)(14 16)(15 17)
(3 28)(5 30)(8 19)(10 16)(12 21)(14 23)
(1 26)(2 27)(3 28)(4 29)(6 17)(7 18)(8 19)(9 20)(11 25)(12 21)(13 22)(15 24)
(1 26)(5 30)(6 17)(10 16)(14 23)(15 24)
(1 26)(4 29)(6 17)(9 20)(13 22)(15 24)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
G:=sub<Sym(30)| (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (6,24)(7,25)(8,21)(9,22)(10,23)(11,18)(12,19)(13,20)(14,16)(15,17), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;
G:=Group( (1,17,15)(2,18,11)(3,19,12)(4,20,13)(5,16,14)(6,24,26)(7,25,27)(8,21,28)(9,22,29)(10,23,30), (6,24)(7,25)(8,21)(9,22)(10,23)(11,18)(12,19)(13,20)(14,16)(15,17), (3,28)(5,30)(8,19)(10,16)(12,21)(14,23), (1,26)(2,27)(3,28)(4,29)(6,17)(7,18)(8,19)(9,20)(11,25)(12,21)(13,22)(15,24), (1,26)(5,30)(6,17)(10,16)(14,23)(15,24), (1,26)(4,29)(6,17)(9,20)(13,22)(15,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );
G=PermutationGroup([[(1,17,15),(2,18,11),(3,19,12),(4,20,13),(5,16,14),(6,24,26),(7,25,27),(8,21,28),(9,22,29),(10,23,30)], [(6,24),(7,25),(8,21),(9,22),(10,23),(11,18),(12,19),(13,20),(14,16),(15,17)], [(3,28),(5,30),(8,19),(10,16),(12,21),(14,23)], [(1,26),(2,27),(3,28),(4,29),(6,17),(7,18),(8,19),(9,20),(11,25),(12,21),(13,22),(15,24)], [(1,26),(5,30),(6,17),(10,16),(14,23),(15,24)], [(1,26),(4,29),(6,17),(9,20),(13,22),(15,24)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)]])
G:=TransitiveGroup(30,120);
Matrix representation of S3×C24⋊C5 ►in GL7(𝔽31)
30 | 30 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | 30 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 19 | 1 | 0 | 0 |
0 | 0 | 19 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 30 | 0 | 0 |
0 | 0 | 0 | 19 | 0 | 30 | 0 |
0 | 0 | 0 | 30 | 0 | 0 | 30 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 19 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 1 | 0 |
0 | 0 | 19 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 30 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 1 | 0 |
0 | 0 | 19 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 30 | 12 | 29 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(7,GF(31))| [30,1,0,0,0,0,0,30,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,19,0,0,0,0,30,19,0,1,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,12,19,30,0,0,0,0,30,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,30],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,1,12,19,0,0,0,30,19,12,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,12,19,0,0,0,1,12,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,30,0,0,0,0,0,1,12,0,0,0,0,0,0,29,19,12,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;
S3×C24⋊C5 in GAP, Magma, Sage, TeX
S_3\times C_2^4\rtimes C_5
% in TeX
G:=Group("S3xC2^4:C5");
// GroupNames label
G:=SmallGroup(480,1196);
// by ID
G=gap.SmallGroup(480,1196);
# by ID
G:=PCGroup([7,-2,-5,-2,2,2,2,-3,324,850,2111,222,15686]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^2=g^5=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g^-1=c*d*e,d*e=e*d,d*f=f*d,g*d*g^-1=d*e*f,g*e*g^-1=e*f=f*e,g*f*g^-1=c>;
// generators/relations
Export